ATTACHMENT A

REMEDIATION GENERAL PERMIT (Provided on CD)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

APR 4 2011

Brian Guichard, Site Manager
Olin Corporation
51 Eames Street
Wilmington, MA 01887

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Olin Corporation site located at 51 Eames Street Wilmington, MA 01887 Middlesex County; Authorization # MAG910074 – Reissuance

Dear Mr. Guichard:

Based on the review of a Notice of Intent (NOI) dated December 3, 2010 and submitted on behalf of Olin Corporation of Tennessee by Steve Morrow for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at this site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note that the checklist includes parameters categorized as follows:

1. Parameters you have marked "Believed Present".

These include total phenols, total phthalates, bis (2- ethylhexyl) phthalate, chloride and iron. With the exception of the pollutants iron and chloride, the remaining three parameters are not in violation of the RGP limits. However, since these were detected in historic (influent and effluent) data, monitoring is required based on the reasonable potential for re-occurrence of these pollutants in the future at levels which may violate RGP permit limits.

2. Parameters you reported as "Believed Absent": total suspended solids, phenols, total residual chlorine, arsenic, nickel and zinc.

With the exception of arsenic which was reported in influent as high as 13 ug/L in violation of the Appendix III limit, total suspended solids, total residual chlorine, phenols, nickel, and zinc were detected at levels below the RGP limits. All these parameters are required to be monitored based also on their historic presence, and a reasonable potential to exceed RGP criteria limits in the future.

Also, please note that the metals included on the list are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). Due to the absence of dilution since this discharge is to an unnamed ditch, EPA determined that the DFR for these parameters is in the one to five (1-5) range (See Appendix IV of the RGP for Massachusetts facilities). Therefore, the limits for arsenic of 10 ug/L, nickel of 29 ug/L, zinc of 66.6 ug/L and iron of 1,000 ug/L are required to achieve permit compliance at your site.

Finally, please note the list of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP requirements.

This general permit and authorization to discharge will expire on September 9, 2015. Since you have not reported a termination date, we interpret that to mean that the discharge will continue indefinitely or that the termination date is unknown. If for any reason the discharge terminates sooner than the expiration date, you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

David M. Webster, Chief Industrial Permits Branch

Enclosure

cc:

Kathleen Keohane, MassDEP

Steve Morrow, Olin

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
TA3	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
Luci Pri	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
nine ine	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
77	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
√	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
100	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
√	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
√	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	1	MAG91074 - Reissuance
Date Authorization Issued:	March	, 2011
Facility/Site Name:	Olin C	Corporation
Facility/Site Address:	Middl	Corporation site located at 51 Eames Street Wilmington, MA 01887 esex County
Logal Name of Operat	-	ers email:SCMorrow@olin.com
Legal Name of Operat	or:	Olin Corporation
Operators name, title, address:	and	Brian Guichard, Site Manager Address, same as the owner.
Estimated Date of Com	pletion	: Unknown
Category and Sub-Cate	egory:	Class II. Subcategory B. and C. VOC Sites with Additional Contamination and Primarily Heavy Metals Sites, Respectively.
Receiving Water:		Unnamed ditch to Halls Brook holding area.

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Dally Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L
√	Total Residual Chlorine (TRC) Total Residual Chlorine	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2,3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 5ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
JH	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L

200	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
42	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
K	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
√	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L

	delovinimati (4 a	Metal Limit 50 mg/l Cad discharge Massachu (ug/l) 1	@ H ¹⁰ = CO3 for es in setts	Minin level	
	Metal parameter	Freshwater			
	39. Antimony	5.6/ML	10	195-20-00	
√	40. Arsenic **	10/ML20			
	41. Cadmium **	0.2/ML10			
	42. Chromium III (trivalent) **	48.8/ML15			

	Jack Special Street Str	Total Recoverable Metal Limit @ H 10 = 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12	Minimum level=ML
	Metal parameter	Freshwater	CENTRAL DISTRICT
	43. Chromium VI (hexavalent) **	11.4/ML10	d, Person
	44. Copper **	5.2/ML15	
	45. Lead **	1.3/ML20	
	46. Mercury **	0.9/ML0.2	
√	47. Nickel **	29/ML20	
	48. Selenium **	5/ML20	
	49. Silver	1.2/ML10	
\checkmark	50. Zinc **	66.6/ML15	1944
√	51. Iron	1,000/ML 20	

	Other Parameters	Limit
/	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
V	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

11 For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L, etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

December 3, 2010

U.S. Environmental Protection Agency
5 Post Office Square, Suite 100
Mail Code OEP06-44
Boston, MA 02109-3912
ATT: Remediation General Permit NOI Processing

Re: Re-Application for Coverage under the 2010 Remediation General Permit Olin Corporation MAG910074

To Whom It May Concern:

Please find enclosed the Notice of Intent (NOI) to re-apply for coverage for the Final 2010 Remediation General Permit.

Sincerely,

Steve Morrow

Principal Environmental Specialist

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : Olin Corporation		Facility/site mailing address:	lress:
Location of facility/site:	Facility SIC	Street:	
longitude: -71.153732	code(s): 9999	51 Eames Street	
b) Name of facility/site owner:		Town: Wilmington	
Email address of facility/site owner:		State:	Zip: County:
SGMorrow@olin.com / Olin Corporation		Š	70010
Telephone no. of facility/site owner: 423-336-4511	36-4511	AIN!	
Fax no. of facility/site owner: 423-336-4166		Owner is (check one): 1	
Address of owner (if different from site):		3. Private © 4. Other	O if so, describe:
Street: 3855 North Ocoee Street, Suite 200			
Town: Cleveland	State: TN	Zip: 37312	County: Bradley
c) Legal name of operator:	Operator te	Operator telephone no: 978-658-6121	
	Operator fa	Operator fax no.: 978-658-6121	Operator email: BEGuichard@olin.com
Operator contact name and title: Brian Guid	Brian Guichard, Site Manager	ger	
Address of operator (if different from owner):	Street: 51 Ea	51 Eames Street	d
Town: Wilmington	State: MA	Zip: 01887	County: Middlesex

Page 10 of 22

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y O N O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y O N O, if Y, date and tracking #: 2/11/2000 MA0005304 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (M	he discharge? Y O N O, if Y, number: en filed for the discharge? R 122.2? Y O N O Her the Massachusetts Contingency Plan (MCP) and exempt from state			
permitting? Y O N O				
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O,			
1. site identification # assigned by the state of NH or MA: RIN-3-0471	if Y, number: 3. EPA Construction General Permit 2 Y O N ©,			
2. permit or license # assigned: 3. state agency contact information: name, location, and	if Y, number: 4. Individual NPDES permit? Y O N O.			
telephone number:	5. any other water quality related individual or general permit? Y O N O, if Y, number: MAG910074			
g) Is the site/facility located within or does it discharge to				
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential			
Activity Category	Activity Sub-Category			
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination			
II - Non Petroleum Site Remediation				
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites			

IV - Miscellaneous Related Discharges	iarges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
2. Discharge information. Please provide information about the discharge, (attachir a) Describe the discharge activities for which the owner/applicant is seeking coverage:	Please provide information a vities for which the owner/ap	provide information about the discharge, (attaching additional sheets as necessary) including: or which the owner/applicant is seeking coverage:
ump and treat system to contain LNAPL migration	NAPL migration	
b) Provide the following information	nation about each discharge:	
1) Number of discharge points:	2) What is the maximum and av Max. flow 0.22 Is max Average flow (include units) 0.19	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow 6.22 Average flow (include units) 6.19 Is average flow a design value or estimate? Is average flow a design value or estimate?
3) Latitude and longitude of each discharge within 100 feet: pt.1: lat 42.527244 long -71.155097 pt.2: lat. pt.3: lat long long pt.4: lat. pt.5: lat long pt.7: lat.	of each discharge within 100 fee long -71.155097 pt.2: lat. long pt.4: lat. long pt.6: lat. long pt.8: lat.	long. long. long. long. etc.
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent © or seasonal O? Is discharge ongoing? Y © N O	tent O or seasonal O?
c) Expected dates of discharge (mm/dd/yy): start	(mm/dd/yy): start	end
d) Please attach a line drawing 1. sources of intake water. 2. c	or flow schematic showing ontributing flow from the or	d) Please attach a line drawing or flow schematic showing water flow through the facility including: 1. sources of intake water. 2. contributing flow from the operation. 3. treatment units, and 4. discharge points and receiving
waters(s). Unnamed ditch, East ditch, New Boston Street drainway, Halls Brook Holding area	ew Boston Street drainway, Halls Brook H	olding area

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

y value	mass (kg)	0	0	0	0	0	0	0	0	0	0	0	0
Average daily value	concentration (ug/l)	0	0	0	0	0	. 0	0	0	0	0	0	0
ly value	(kg)												
Maximum daily value	concentration (ug/l)												7
Minimum	Level (ML) of Test Method	D 2.0	CLF 0.020	4.7	IACN 0.010	1.0	1.0	1.0	1.0	1.0	0.02	1.0	50
Analytical	Method Used (method #)	SM 2540	SM 4500	1664A	620400	82600B	82600B	82600B	82600B	82600B	8011	8260 B	8260 B
Samule	Type (e.g., grab)	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab
	# of Samples	1	6	6	1	6	6	6	6	6	-	1	-
	Believed Present												
	Believed Absent	×	×	×	×	×	×	×	×	×	×	×	×
	CAS				57125	71432	108883	100414	108883; 106423; 95476; 1330207	n/a	106934	1634044	75650
	Parameter *	1. Total Suspended Solids (TSS)	2. Total Residual Chlorine (TRC)	3. Total Petroleum Hydrocarbons (TPH)	4. Cyanide (CN)	5. Benzene (B)	6. Toluene (T)	7. Ethylbenzene (E)	8. (m,p,o) Xylenes (X)	9. Total BTEX 2	10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	11. Methyl-tert-Butyl Ether (MtBE)	12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)

^{*}Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

					Comple	Anolytical	Minimum	Maximum daily value	ly value	Average daily value	value
Parameter *	CAS	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	grab	8260 B	1.0			0	0
14. Naphthalene	91203	×		6	grab	8270 C	0.91			0	0
15. Carbon Tetrachloride	56235	×		1	grab	8260 B	1.0			0	0
16.1,2 Dichlorobenzene (o-DCB)	95501	×		1	grab	8260 B	1.0			0	0
17.1,3 Dichlorobenzene (m-DCB)	541731	×		1	grab	8260 B	1.0			0	0
18.1,4 Dichlorobenzene (p-DCB)	106467	×		1	grab	8260 B	1.0			0	0
18a. Total dichlorobenzene		×									
19.1,1 Dichloroethane (DCA)	75343	×		1	grab	8260 B	1.0			0	
20. 1,2 Dichloroethane (DCA)	107062	×		1	grab	8260 B	1.0			0	0
21. 1,1 Dichloroethene (DCE)	75354	×		6	grab	8260 B	1.0			0	0
22. cis-1,2 Dichloroethene (DCE)	156592	×		6	grab	8260 B	1.0			0	0
23. Methylene Chloride	75092	×		-	grab	8260 B	2.0			0	0
24. Tetrachloroethene (PCE)	127184	×		1	grab	8260 B	1.0			0	0
25.1,1,1 Trichloro-ethane (TCA)	71556	X		6	grab	8260 B	1.0			0	0
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	grab	8260 B	1.0			0	0
27. Trichloroethene (TCE)	79016	×		6	grab	8260 B	1.0			0	0

					1	1 1 1	Minimum	Maximum daily value	y value	Average daily value	value
Parameter *	CAS	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)		concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	grab	8260 B	0.5			0	0
29. Acetone	67641	×		6	grab	8260 B	90			0	0
30. 1,4 Dioxane	123911	×			grab	8260 B	90			0	0
31. Total Phenols	108952		×	6	grab	L210-001A	0.01			0	990.0
32. Pentachlorophenol (PCP)	87865	×		6	grab	8270 C	0.91			0	0
33. Total Phthalates (Phthalate esters) 4			×	6	grab	8270 C					0.048
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817		X	6	grab	8270 C	1.8				0.022
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		6	grab	8270 C				0	0_
a. Benzo(a) Anthracene	56553	×		6	grab	8270 C	0.27			0	0
b. Benzo(a) Pyrene	50328	×		6	grab	8270 C	0.18			0	0
c. Benzo(b)Fluoranthene	205992	×		6	grab	8270 C	0.27			0	0
d. Benzo(k)Fluoranthene	207089	×		6	grab	8270 C	0.27			0	0
e. Chrysene	21801	×		6	grab	8270 C	0.91			0	0
f. Dibenzo(a,h)anthracene	53703	×		6	grab	8270 C	0.45			0	0
g. Indeno(1,2,3-cd) Pyrene	193395	×		6	grab	8270 C	0.45			0	0
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		6	grab	8270 C				0	0

⁴The sum of individual phthalate compounds.

Page 15 of 22

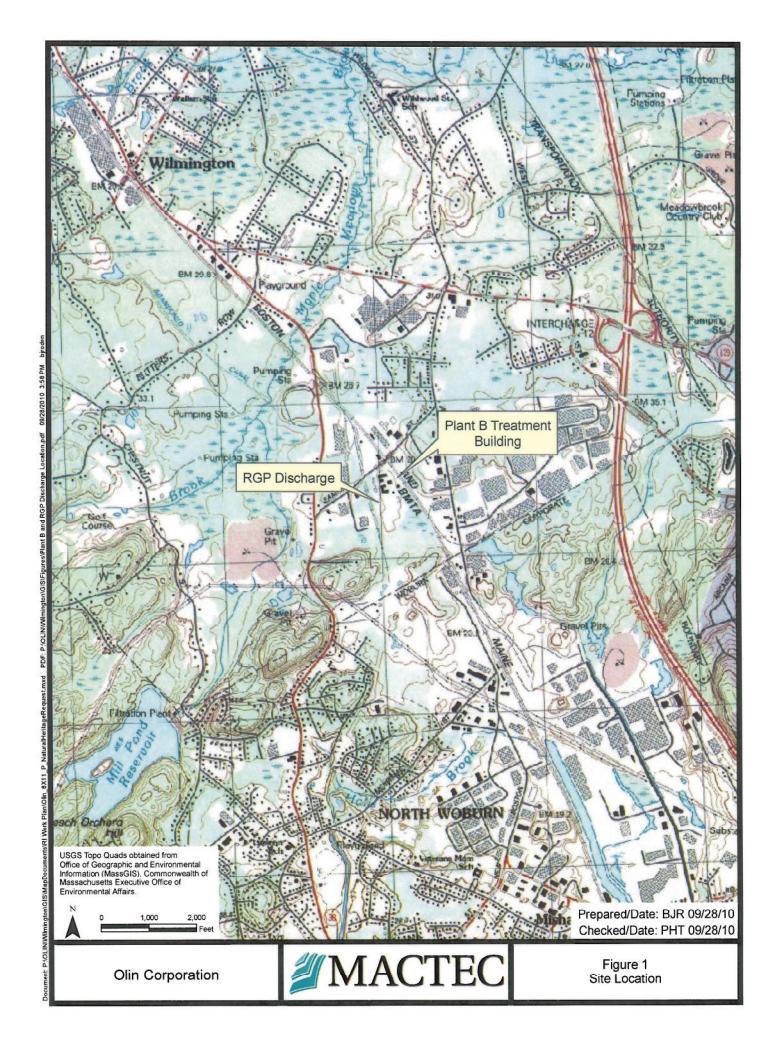
Remediation General Permit Appendix V - NOI

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

							Minimum	Maximum daily value	ly value	Average daily value	value
Parameter *	CAS	Believed Absent	Believed Present	# of Samples	Sample Type (e.g.,	Analytical Method Used	Level (ML) of	concentration	mass	concentration	mass
					grab)	(method #)	Method	(ng/l)	(kg)	(ng/l)	E E
h. Acenaphthene	83329	×		6	grab	8270 C	0.91			0	0
i. Acenaphthylene	208968	×		6	grab	8270 C	0.27			0	0
j. Anthracene	120127	×		9	grab	8270 C	0.91			0	0
k. Benzo(ghi) Perylene	191242	×		6	grab	8270 C	0.45			0	0
1. Fluoranthene	206440	×		6	grab	8270 C	0.91			0	0
m. Fluorene	86737	×		9	grab	8270 C	0.91			0	0
n. Naphthalene	91203	×		9	grab	8270 C	16'0			0	0
o. Phenanthrene	85018	×		6	grab	8270 C	0.18			0	0
p. Pyrene	129000	×		6	grab	8270 C	4.5			0	0
	85687; 84742;	I	I								
	117840; 84662;	×		_	grab	809	0.91			0	0
37. Total Polychlorinated Biphenyls (PCBs)	131113;										
38. Chloride	16887006		×	1	grab	300.0	10			320,000	235
39. Antimony	7440360	×		1	grab	200.7	6.0			0	0
40. Arsenic	7440382	×		1	grab	200.7	10			0	0
41. Cadmium	7440439	×			grab	200.7	1.0		-	0	0
42. Chromium III (trivalent)	16065831	×	0	1	grab	200.7	5.0			0	0
43. Chromium VI (hexavalent)	18540299	X		1	grab	7196 A	5.0			0	0
44. Copper	7440508	×		1	grab	200.7	1.0			0	0
45. Lead	7439921	×		-	grab	200.7	5.0			0	0
46. Mercury	7439976	×		1	grab	245.1	0.20			0	0
47. Nickel	7440020	×		1	grab	200.7	10			0	0
48. Selenium	7782492	×		1	grab	200.7	10			0	0
49. Silver	7440224	×		1	grab	200.7	5.0			0	0
50. Zinc	7440666	×		-	grab	200.7	50			0	0
51. Iron	7439896		×	6	grab	200.7	100				811.85
Other (describe):					grab						

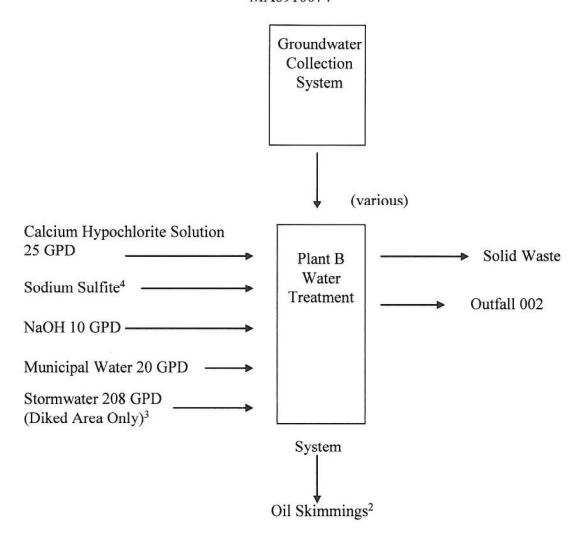
Page 16 of 22

Remediation General Permit Appendix V - NOI


		Believed	Believed		Sample	Sample Analytical Method Minimum Level	Minimum Level				
Paarameter	CAS Number	Absent	Present	# of Samples	Type	Used	of Test Method	Maximum Daily Value	ily Value	Average Concnetration	netration
								Concentration	Mass	Concentration	Mass
								(l/6rl)	(kg)	(l/grl)	(kg)
Ammonia	8013-59-0	×		6	Grab	L107-06-1B	0.1 mg/l			0	
2,4,4-Trimethyl-1-Pentene	107-39-1	×		6	Grab	8260B	1 µg/l			0	
2.4.4-Trimethyl-2-Pentene	107-40-4	×		6	Grab	8260B	1 µg/1			0	
N-Nitrosodimethylamine	62-75-9		×	1	Grab	8270LL	1.9 ng/l			960.0	0.000066

What is the dilution factor for applicable metals? Metal: ARSENIC Metal: IRON Metal: IRON Metal: IRON DF DF O ARSENIC, IRON ARSENIC, IRON Metal: DF ARSENIC, IRON Metal: ARSENIC, IRON ARSENIC, IRON Metal: ARSENIC, IRON Metal: ARSENIC, IRON	Parameter* CAS Believed Believed # of Type Wethod Used Used	Mumber Number Mimber Mimber Mich exceed which exceed sing the formula in the start zero.	Believed Absent D believed influent ezero dilut zero dilut ed the Ap mula in Pa e State pr	Believed Present Present present, p exceed the ion)? Y pendix II art I.A.3.c ior to the ior to the ior	# of Samples	Sample Type (e.g., grab) out the follow limits in alculate the alculate the alculate the of the NOI	Analytical Method Used (method #) If yes, w ARSENIC, I Look up factor in influent	Minimum Level (ML) of Test Method results of an hich metals RON the limit ca Appendix have the po	Inimum Level Level ML) of Test (ug/l) (kg) Method (kg) Method (kg) Method (kg) We the potential to exceed the correspondix IV. Do any of the mean potential to exceed the corresponding to the mean potential to the mean potential to the corresponding	mass (kg) (kg) (kg)	Average daily value concentration (kg (kg/l) (kg ding dilution s in the responding
Appendix III (i.e., the limits set at zero dilution)? Y O NO Step 2: For any metals which exceed the Appendix III limits, calculate the instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal ARSENIC Metal IRON DF O Metal IRON DF O ARSENIC, IRON If yes, which metals? Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y O N O If Y, list which metals: ARSENIC, IRON ARSENIC, IRON	b) For discharges where	metals are b	elieved	present, p	lease fill o	out the follow	ing (attach	results of an	y calculations	» [
12: For any metals which exceed the Appendix III limits, calculate the Ition factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI ructions or as determined by the State prior to the submission of this NOI. at is the dilution factor for applicable metals? [al: ARSENIC DF] [al: IRON DF] [al: I	Step 1: Do any of the man Appendix III (i.e., the line	etals in the ir mits set at ze	ıfluent o	exceed the	effluent l	limits in	If yes, w ARSENIC, I	hich metals	?		
al: DF	Step 2: For any metals v dilution factor (DF) usi instructions or as determ. What is the dilution fact Metal ARSENIC Metal: IRON Metal: RON	which exceed sing the formula in the	the Ap ula in Pa State pr able me	pendix II art I.A.3.c ior to the tals?	I limits, c (step 2) o submissio	alculate the of the NOI n of this NOI		the limit ca Appendix have the polimits in Appendix ation above	Iculated at the IV. Do any o tential to exceptendix IV (i.a. the limit set a list which m	f the metal: ed the corres, is the in: the calcu	ding dilution s in the responding fluent lated dilution
	See attached sketch and proc	cess descriptior									
attached sketch and process description.	b) Identify each	Frac. tank	_	stripper l	-	vater separato		Equalization		ag filter 🗵	GAC filter
Air stripper □ Oil/water separator □ Equalization tanks ▼ Bag filter ▼	applicable treatment unit (check all that apply):	Chlorination		De- chlorination ⊠		Other (please describe):	pribe):				

Average flow rate of discharge Epm Maximum flow rate of treatment system Epm Design flow rate of treatment system Es Epm Design flow rate of treatment system Design flow rate of treatment system Es Epm Design flow rate of treatment system Design flow r	c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate(s) (gallons per minute) of
--	---


	1 -			_				1
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.	7. Supplemental information.	f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.	e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1	d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.	c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O	coverage under this general permit? A O B O C O D O F O	a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for	6. ESA and NHPA Eligibility. Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Attachment II

Wilmington Wastewater Flow MA6910074

Notes:

- 1. Various Flow Rate
- 2. Solid Waste consist of 1) 1-Drum of Filter Bags/year
 - 6-2000# carbon beds/year carbon shipping back to Calgon Corporation for regeneration
 - 3) < 1-55 Gallon Drum of Recovered Oil
- 3. Stormwater Basis: 33' x 51' Pad with 49.5" Rainfall/year Discharge approximately 250 days/year
- 4. Only added if Total Residual Chlorine is >0.02mg/l

Job Number: 360-30715-1

Client Sample ID: Lab Sample ID:

OC-Eff102010 360-30715-1

EFFLUENT

Date Sampled:

10/20/2010 1025 Date Received: 10/20/2010 1745

Client Matrix:

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Ar	nalyzed:	10/27/2010 0518	
Prep Method: 5030B		Date Pr	epared:	10/27/2010 0518	
Benzene	ND	ug/L	0.20	1.0	1.0
Toluene	ND	ug/L	0.40	1.0	1.0
Ethylbenzene	ND	ug/L	0.20	1.0	1.0
o-Xylene	ND	ug/L	0.40	1.0	1.0
m-Xylene & p-Xylene	ND	ug/L	0.40	2.0	1.0
Methyl tert-butyl ether	ND	ug/L	0.20	1.0	1.0
Butyl alcohol, tert-	ND	ug/L	3.8	50	1.0
Tert-amyl methyl ether	ND	ug/L	0.60	5.0	1.0
Carbon tetrachloride	ND	ug/L	0.40	1.0	1.0
1,1,1-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1,2-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1-Dichloroethane	ND	ug/L	0.20	1.0	1.0
1,1-Dichloroethene	ND	ug/L	0.40	1.0	1.0
1,2-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,2-Dichloroethane	ND	ug/L	0.40	1.0	1.0
1,3-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,4-Dioxane	ND	ug/L	10	50	1.0
1,4-Dichlorobenzene	ND	ug/L	0.20	1.0	1.0
Acetone	ND	ug/L	16	50	1.0
cis-1,2-Dichloroethene	ND	ug/L	0.20	1.0	1.0
Methylene Chloride	ND	ug/L	0.20	2.0	1.0
Tetrachloroethene	ND	ug/L	0.20	1.0	1.0
Trichloroethene	ND	ug/L	0.40	1.0	1.0
Vinyl chloride	ND	ug/L	0.40	0.50	1.0
2,4,4-Trimethyl-1-pentene	ND	ug/L	0.60	1.0	1.0
2,4,4-Trimethyl-2-pentene	ND	ug/L	0.60	1.0	1.0
Surrogate				Acceptance Limits	
4-Bromofluorobenzene	96	%		70 - 130	
Dibromofluoromethane	100	%		70 - 130	
Toluene-d8 (Surr)	102	%		70 - 130	
Method: 8270C LL		Date A	nalyzed:	11/10/2010 1952	
Prep Method: 3510C		Date P	repared:	10/25/2010 1620	
2,4,5-Trichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4,6-Trichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dinitrophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dimethylphenol	ND	ug/L	0.45	4.5	1.0
2-Chlorophenol	ND	ug/L	0.45	4.5	1.0

Job Number: 360-30715-1

Client Sample ID: Lab Sample ID:

OC-Eff102010 360-30715-1

Date Sampled: 10/20/2010 1025 Date Received: 10/20/2010 1745

Client Matrix:

Analyte	Result/Qua	llifier	Unit	MDL	RL	Dilution
2-Methylphenol	ND		ug/L	0.45	4.5	1.0
2-Nitrophenol	ND		ug/L	0.45	4.5	1.0
3 & 4 Methylphenol	ND		ug/L	0.45	4.5	1.0
4,6-Dinitro-2-methylphenol	ND		ug/L	0.45	4.5	1.0
4-Chloro-3-methylphenol	ND		ug/L	0.45	4.5	1.0
4-Nitrophenol	ND		ug/L	0.45	4.5	1.0
Acenaphthene	ND		ug/L	0.045	0.91	1.0
Acenaphthylene	ND		ug/L	0.045	0.27	1.0
Anthracene	ND		ug/L	0.064	0.91	1.0
Benzo[a]anthracene	ND		ug/L	0.15	0.27	1.0
Benzo[a]pyrene	ND		ug/L	0.094	0.18	1.0
Benzo[b]fluoranthene	ND		ug/L	0.13	0.27	1.0
Benzo[g,h,i]perylene	ND		ug/L	0.085	0.45	1.0
Benzo[k]fluoranthene	ND		ug/L	0.15	0.27	1.0
Bis(2-ethylhexyl) phthalate	0.45	JB	ug/L	0.45	1.8	1.0
Butyl benzyl phthalate	ND		ug/L	0.45	4.5	1.0
Chrysene	ND		ug/L	0.15	0.91	1.0
Di-n-butyl phthalate	0.57	JB	ug/L	0.55	4.5	1.0
Di-n-octyl phthalate	ND		ug/L	0.66	4.5	1.0
Dibenz(a,h)anthracene	ND		ug/L	0.058	0.45	1.0
Diethyl phthalate	ND		ug/L	0.45	4.5	1.0
Dimethyl phthalate	ND		ug/L	0.45	4.5	1.0
Fluoranthene	ND		ug/L	0.18	0.91	1.0
Fluorene	ND		ug/L	0.045	0.91	1.0
Indeno[1,2,3-cd]pyrene	ND		ug/L	0.072	0.45	1.0
Naphthalene	ND		ug/L	0.045	0.91	1.0
Pentachlorophenol	ND		ug/L	0.45	0.91	1.0
Phenanthrene	ND		ug/L	0.077	0.18	1.0
Phenol	ND	*	ug/L	0.45	4.5	1.0
Pyrene	ND		ug/L	0.17	4.5	1.0
N-Nitrosodimethylamine	ND		ug/L	0.45	4.5	1.0
Surrogate					Acceptance Limits	
2,4,6-Tribromophenol	62		%		15 - 110	
2-Fluorobiphenyl	59		%		30 - 130	
2-Fluorophenol	28		%		15 - 110	
Phenol-d5	17		%		15 - 110	
Terphenyl-d14	75		%		30 - 130	
Nitrobenzene-d5	68		%		30 - 130	
Method: 608			Date Ar		0/26/2010 1722	
Prep Method: CWA_Prep			Date Pr	epared: 1	0/22/2010 1558	

Job Number: 360-30715-1

Client Sample ID: Lab Sample ID:

OC-Eff102010 360-30715-1

Date Sampled:

10/20/2010 1025 Date Received: 10/20/2010 1745

Client Matrix:

Analyte	Result/Qualifier	Unit	MDL	RL	Dilutio
PCB-1016	ND *	ug/L	0.25	0.91	1.0
PCB-1221	ND	ug/L	0.40	0.91	1.0
PCB-1232	ND	ug/L	0.31	0.91	1.0
PCB-1242	ND	ug/L	0.16	0.91	1.0
PCB-1248	ND	ug/L	0.35	0.91	1.0
PCB-1254	ND	ug/L	0.31	0.91	1.0
PCB-1260	ND *	ug/L	0.23	0.91	1.0
Surrogate				Acceptance Limits	
Tetrachloro-m-xylene	83	%		30 - 150	
DCB Decachlorobiphenyl	113	%		30 - 150	
Surrogate				Acceptance Limits	
Tetrachloro-m-xylene	87	%		30 - 150	
DCB Decachlorobiphenyl	109	%		30 - 150	
Method: 8011		Date Ar	nalyzed:	11/01/2010 1746	
Prep Method: 8011		Date Pr	epared:	11/01/2010 1000	
Ethylene Dibromide	ND	ug/L	0.013	0.020	1.0
Surrogate				Acceptance Limits	
1,1,1,2-Tetrachloroethane	109	%		70 - 130	
Surrogate				Acceptance Limits	
1,1,1,2-Tetrachloroethane	105	%		70 - 130	
Method: 200.7 Rev 4.4		Date Ar	nalyzed:	10/27/2010 1241	
Prep Method: 200.7			repared:	10/26/2010 0752	
Silver	ND	ug/L	1.4	5.0	1.0
Arsenic	ND	ug/L	2.8	10	1.0
Cadmium	ND	ug/L	0.13	1.0	1.0
Chromium	ND	ug/L	0.65	5.0	1.0
Copper	ND	ug/L	2.3	10	1.0
Iron	ND	ug/L	14	100	1.0
Nickel	ND	ug/L	1.2	10	1.0
Lead	ND	ug/L	1.4	5.0	1.0
Antimony	ND	ug/L	1.5	6.0	1.0
Selenium	ND	ug/L	4.0	10	1.0
Zinc	ND	ug/L	6.6	50	1.0
Method: 245.1		Date A	nalyzed:	10/26/2010 1547	
Prep Method: 245.1		Date P	repared:	10/26/2010 0819	
Mercury	ND	ug/L	0.060	0.20	1.0

Client Sample ID:

OC-Eff102010

Lab Sample ID:

360-30715-1

Date Sampled:

10/20/2010 1025

Job Number: 360-30715-1

Date Received: 10/20/2010 1745

Client Matrix:

Analyte	Result/Qualifier	Unit	RL	RL	Dilution
Method: 1664A		Date Ana	lyzed: 10/27/	2010 1606	
Prep Method: 1664A		Date Prep	pared: 10/27/	2010 1119	
SGT-HEM	ND	mg/L	4.7	4.7	1.0
Method: 300.0		Date Ana	lyzed: 10/30/	2010 0928	
Chloride	320	mg/L	10	10	10
Method: 7196A		Date Ana	lyzed: 10/21/	2010 0821	
Cr (VI)	ND	mg/L	0.0050	0.0050	1.0
Method: 7196A		Date Ana	lyzed: 11/03/	2010 1131	
Chromium, trivalent	ND	mg/L	0.0050	0.0050	1.0
Method: L204001A CN		Date Ana	lyzed: 10/26/	2010 1509	
Prep Method: Distill/CN		Date Prep	pared: 10/26/	2010 1035	
Cyanide, Total	ND	mg/L	0.010	0.010	1.0
Method: L210-001A		Date Ana	lyzed: 11/05/	2010 1556	
Prep Method: Distill/Phenol		Date Prep	pared: 11/05/	2010 1359	
Phenols, Total	ND	mg/L	0.010	0.010	1.0
Method: SM 2540D		Date Ana	lyzed: 10/26/	2010 1023	
Total Suspended Solids	ND	mg/L	2.0	2.0	1.0
Method: SM 4500 CI F		Date Ana	lyzed: 10/21/	2010 0918	
Chlorine	ND HF	mg/L	0.020	0.020	1.0

Client Sample ID: Lab Sample ID:

OC-Inf102010 360-30715-2

INFLUENT

Date Sampled:

10/20/2010 0945 10/20/2010 1745

Job Number: 360-30715-1

Date Received:

Client Matrix: Water

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date An	alyzed:	10/27/2010 0540	
Prep Method: 5030B		Date Pr	epared:	10/27/2010 0540	
Benzene	ND	ug/L	0.20	1.0	1.0
Toluene	ND	ug/L	0.40	1.0	1.0
Ethylbenzene	ND	ug/L	0.20	1.0	1.0
o-Xylene	ND	ug/L	0.40	1.0	1.0
m-Xylene & p-Xylene	ND	ug/L	0.40	2.0	1.0
Methyl tert-butyl ether	ND	ug/L	0.20	1.0	1.0
Butyl alcohol, tert-	ND	ug/L	3.8	50	1.0
Tert-amyl methyl ether	ND	ug/L	0.60	5.0	1.0
Carbon tetrachloride	ND	ug/L	0.40	1.0	1.0
1,1,1-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1,2-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1-Dichloroethane	ND	ug/L	0.20	1.0	1.0
1,1-Dichloroethene	ND	ug/L	0.40	1.0	1.0
1,2-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,2-Dichloroethane	ND	ug/L	0.40	1.0	1.0
1,3-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,4-Dioxane	ND	ug/L	10	50	1.0
1,4-Dichlorobenzene	ND	ug/L	0.20	1.0	1.0
Acetone	ND	ug/L	16	50	1.0
cis-1,2-Dichloroethene	ND	ug/L	0.20	1.0	1.0
Methylene Chloride	ND	ug/L	0.20	2.0	1.0
Tetrachloroethene	ND	ug/L	0.20	1.0	1.0
Trichloroethene	ND	ug/L	0.40	1.0	1.0
Vinyl chloride	ND	ug/L	0.40	0.50	1.0
2,4,4-Trimethyl-1-pentene	120	ug/L	0.60	1.0	1.0
2,4,4-Trimethyl-2-pentene	21	ug/L	0.60	1.0	1.0
Surrogate				Acceptance Limits	
4-Bromofluorobenzene	99	%		70 - 130	
Dibromofluoromethane	98	%		70 - 130	
Toluene-d8 (Surr)	98	%		70 - 130	
Method: 8270C LL		Date Ar	nalyzed:	11/10/2010 2024	
Prep Method: 3510C		Date Pr	epared:	10/25/2010 1620	
2,4,5-Trichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4,6-Trichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dichlorophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dinitrophenol	ND	ug/L	0.45	4.5	1.0
2,4-Dimethylphenol	ND	ug/L	0.45	4.5	1.0
2-Chlorophenol	ND	ug/L	0.45	4.5	1.0

Job Number: 360-30715-1

Client Sample ID: Lab Sample ID:

OC-Inf102010

360-30715-2

Date Sampled:

10/20/2010 0945 Date Received: 10/20/2010 1745

Client Matrix:

Analyte	Result/Qualifier		Unit	MDL	RL	Dilution
2-Methylphenol	ND		ug/L	0.45	4.5	1.0
2-Nitrophenol	ND		ug/L	0.45	4.5	1.0
3 & 4 Methylphenol	ND		ug/L	0.45	4.5	1.0
4,6-Dinitro-2-methylphenol	ND		ug/L	0.45	4.5	1.0
4-Chloro-3-methylphenol	ND		ug/L	0.45	4.5	1.0
4-Nitrophenol	ND		ug/L	0.45	4.5	1.0
Acenaphthene	ND		ug/L	0.045	0.91	1.0
Acenaphthylene	ND		ug/L	0.045	0.27	1.0
Anthracene	ND		ug/L	0.064	0.91	1.0
Benzo[a]anthracene	ND		ug/L	0.15	0.27	1.0
Benzo[a]pyrene	ND		ug/L	0.094	0.18	1.0
Benzo[b]fluoranthene	ND		ug/L	0.13	0.27	1.0
Benzo[g,h,i]perylene	ND		ug/L	0.085	0.45	1.0
Benzo[k]fluoranthene	ND		ug/L	0.15	0.27	1.0
Bis(2-ethylhexyl) phthalate	9.3	В	ug/L	0.45	1.8	1.0
Butyl benzyl phthalate	ND		ug/L	0.45	4.5	1.0
Chrysene	ND		ug/L	0.15	0.91	1.0
Di-n-butyl phthalate	0.60	JB	ug/L	0.55	4.5	1.0
Di-n-octyl phthalate	ND		ug/L	0.66	4.5	1.0
Dibenz(a,h)anthracene	ND		ug/L	0.058	0.45	1.0
Diethyl phthalate	ND		ug/L	0.45	4.5	1.0
Dimethyl phthalate	ND		ug/L	0.45	4.5	1.0
Fluoranthene	ND		ug/L	0.18	0.91	1.0
Fluorene	ND		ug/L	0.045	0.91	1.0
Indeno[1,2,3-cd]pyrene	ND		ug/L	0.072	0.45	1.0
Naphthalene	ND		ug/L	0.045	0.91	1.0
Pentachlorophenol	ND		ug/L	0.45	0.91	1.0
Phenanthrene	ND		ug/L	0.077	0.18	1.0
Phenol	0.97	J *	ug/L	0.45	4.5	1.0
Pyrene	ND		ug/L	0.17	4.5	1.0
N-Nitrosodimethylamine	ND		ug/L	0.45	4.5	1.0
Surrogate				Acceptance Limits		
2,4,6-Tribromophenol	60		%		15 - 110	
2-Fluorobiphenyl	53		%		30 - 130	
2-Fluorophenol	25		%		15 - 110	
Phenol d5	15		%		15 - 110	
Terphenyl-d14	58		%		30 - 130	
Nitrobenzene-d5	63		%		30 - 130	
Method: 608			Date Ar	alyzed: 10/26	5/2010 1747	
Prep Method: CWA_Prep			Date Pr	epared: 10/22	2/2010 1558	

Job Number: 360-30715-1

Client Sample ID: Lab Sample ID: OC-Inf102010 360-30715-2 Date Sampled: Date Received: 10/20/2010 0945 10/20/2010 1745

Client Matrix:

Analyte	Result/Qua	Result/Qualifier		MDL	RL	Dilution
PCB-1016	ND	*	ug/L	0.25	0.91	1.0
PCB-1221	ND		ug/L	0.40	0.91	1.0
PCB-1232	ND		ug/L	0.31	0.91	1.0
PCB-1242	ND		ug/L	0.16	0.91	1.0
PCB-1248	ND		ug/L	0.35	0.91	1.0
PCB-1254	ND		ug/L	0.31	0.91	1.0
PCB-1260	ND	*	ug/L	0.23	0.91	1.0
Surrogate			Acceptance Limits			
Tetrachloro-m-xylene	54		%		30 - 150	
DCB Decachlorobiphenyl	66		%		30 - 150	
Surrogate					Acceptance Limits	
Tetrachloro-m-xylene	59		%		30 - 150	
DCB Decachlorobiphenyl	68		%		30 - 150	
Method: 8011		Date Analyzed: 11/01/2010 1808				
Prep Method: 8011			Date Pr	epared:	11/01/2010 1000	
Ethylene Dibromide	ND		ug/L	0.013	0.020	1.0
Surrogate					Acceptance Limits	
1,1,1,2-Tetrachloroethane	124		%		70 - 130	
Surrogate			Acceptance Limits			
1,1,1,2-Tetrachloroethane	96		%		70 - 130	
Method: 200.7 Rev 4.4			Date Analyzed: 10/27/2010 1244			
Prep Method: 200.7			Date Pr	epared:	10/26/2010 0752	
Silver	ND		ug/L	1.4	5.0	1.0
Arsenic	13		ug/L	2.8	10	1.0
Cadmium	ND		ug/L	0.13	1.0	1.0
Chromium	0.89	JB	ug/L	0.65	5.0	1.0
Copper	ND		ug/L	2.3	10	1.0
Iron	9400		ug/L	14	100	1.0
Nickel	2.8	J	ug/L	1.2	10	1.0
Lead	ND		ug/L	1.4	5.0	1.0
Antimony	ND		ug/L	1.5	6.0	1.0
Selenium	ND		ug/L	4.0	10	1.0
7inc	7.4	J	ug/L	6.6	50	1.0
Method: 245.1			Date Analyzed: 10/26/2010 1548			
Prep Method: 245.1			Date Prepared:		10/26/2010 0819	
Mercury	ND		ug/L	0.060	0.20	1.0

Client Sample ID:

OC-Inf102010

Lab Sample ID:

360-30715-2

Date Sampled:

10/20/2010 0945

Job Number: 360-30715-1

Date Received:

10/20/2010 1745

Client Matrix:

Analyte	Result/Qualifier	Unit	RL	RL	Dilution
Method: 1664A		Date An	alyzed: 10/27	/2010 1610	
Prep Method: 1664A		Date Pre	epared: 10/27	/2010 1131	
SGT-HEM	ND	mg/L	4.7	4.7	1.0
Method: 300.0		Date Analyzed: 10/30/2010 0958		/2010 0958	
Chloride	300	mg/L	10	10	10
Method: 7196A		Date An	alyzed: 10/21	/2010 0821	
Cr (VI)	ND	mg/L	0.0050	0.0050	1.0
Method: 7196A		Date An	alyzed: 11/03.	/2010 1131	
Chromium, trivalent	ND	mg/L	0.0050	0.0050	1.0
Method: L204001A CN		Date An	alyzed: 10/26	/2010 1510	
Prep Method: Distill/CN		Date Pre	epared: 10/26	/2010 1035	
Cyanide, Total	ND	mg/L	0.010	0.010	1.0
Method: L210-001A		Date An	alyzed: 11/05	/2010 1559	
Prep Method: Distill/Phenol		Date Pre	epared: 11/05	/2010 1359	
Phenols, Total	ND	mg/L	0.010	0.010	1.0
Method: SM 2540D		Date An	alyzed: 10/26	/2010 1023	
Total Suspended Solids	9.0	mg/L	5.0	5.0	1.0
Method: SM 4500 CI F	Date Analyzed		alyzed: 10/21	/2010 0918	
Chlorine	ND HF	mg/L	0.020	0.020	1.0

Client Sample ID:

OC-Trip Blank

Lab Sample ID:

360-30715-3

Date Sampled:

10/20/2010 0945

Job Number: 360-30715-1

Date Received: 10/20/2010 1745 Client Matrix:

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 10/27/2010		10/27/2010 0456	
Prep Method: 5030B		Date Prepared:		10/27/2010 0456	
Benzene	ND	ug/L	0.20	1.0	1.0
Toluene	ND	ug/L	0.40	1.0	1.0
Ethylbenzene	ND	ug/L	0.20	1.0	1.0
o-Xylene	ND	ug/L	0.40	1.0	1.0
m-Xylene & p-Xylene	ND	ug/L	0.40	2.0	1.0
Methyl tert-butyl ether	ND	ug/L	0.20	1.0	1.0
Butyl alcohol, tert-	ND	ug/L	3.8	50	1.0
Tert-amyl methyl ether	ND	ug/L	0.60	5.0	1.0
Carbon tetrachloride	ND	ug/L	0.40	1.0	1.0
1,1,1-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1,2-Trichloroethane	ND	ug/L	0.40	1.0	1.0
1,1-Dichloroethane	ND	ug/L	0.20	1.0	1.0
1,1-Dichloroethene	ND	ug/L	0.40	1.0	1.0
1,2-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,2-Dichloroethane	ND	ug/L	0.40	1.0	1.0
1,3-Dichlorobenzene	ND	ug/L	0.40	1.0	1.0
1,4-Dioxane	ND	ug/L	10	50	1.0
1,4-Dichlorobenzene	ND	ug/L	0.20	1.0	1.0
Acetone	ND	ug/L	16	50	1.0
cis-1,2-Dichloroethene	ND	ug/L	0.20	1.0	1.0
Methylene Chloride	ND	ug/L	0.20	2.0	1.0
Tetrachloroethene	ND	ug/L	0.20	1.0	1.0
Trichloroethene	ND	ug/L	0.40	1.0	1.0
Vinyl chloride	ND	ug/L	0.40	0.50	1.0
2,4,4-Trimethyl-1-pentene	ND	ug/L	0.60	1.0	1.0
2,4,4-Trimethyl-2-pentene	ND	ug/L	0.60	1.0	1.0
Surrogate		Acceptance Limits			
4-Bromofluorobenzene	99	%	The transfer of the same of th	70 - 130	
Dibromofluoromethane	100	%		70 - 130	
Toluene-d8 (Surr)	100	%		70 - 130	

DATA REPORTING QUALIFIERS

Client: Olin Corporation

Job Number: 360-30715-1

Lab Section	Qualifier	Description
GC/MS VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
	*	LCS or LCSD exceeds the control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC Semi VOA		
	*	RPD of the LCS and LCSD exceeds the control limits
Metals		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chemistry		
	HF	Field parameter with a holding time of 15 minutes